Design of a Semi-Automatic Segmentation Method for Measurement of the Hippocampal Volume in the Rat Brain from Magnetic Resonance Images

Matthew DiFrancesco, Emily Wible, Amanda Yung

Clients: Dr. James Gee and Dr. Lynnae Schwartz
Abramson Pediatric Research Center

Project Illustration

Results: Volume Measurements

Image	Rater 1 Volume (mm³)	R ater 2 V olume (mm³)	Rater 3 Volume (mm³)
1	75.25±2.51	74.16±1.71	75.96±0.46
2	76.16±1.89	78.71±3.79	76.32±3.81
3	74.75±2.91	74.97±2.93	76.75±0.70
4	78.25±1.44	75.69±1.76	79.59±0.57

Background

Isoflurae may induce neuronal apoptosis in neonatal brain
Hippocampus-related cognition affected in behavioral tests (spatial working memory)

Current methods are either labor-intensive or practically unfeasible
Manual segmentation—labor-intensive, prone to rater error
Automatic segmentation—requires creation of deformable atlas with data not readily available

ITK-SNAP offers an ideal mix of automatic and manual segmentation components
Easy-to-use for clinicians, researchers, and technicians untrained in computer programming

Design a protocol to reliably measure the volume of the rat hippocampus with the ITK-SNAP interface

Block Diagram

Specifications

Specification	Promised	Delivered	Test Method
Reliability	Inter- and intra- rate reliability of at least 0.30	Inter-Rater Reliability: 0.934 Range: 0.907 - 0.953 Intra-Rater Reliability: 0.952 Range: 0.907 - 0.919	Dice Coefficients calculated from ITK-SNAI segmentations using Convert3D
Sensitivity	Detect hippocampal volume difference of less than 25%	Detected 3.62% differencewith significance (p=0.0113, two-tailed) Detected 2.88% differencewith significance (p=0.0154, two-tailed)	Average hippocampus volumes for each image set (N=4); t-test averages of images with >1.9 mm ⁴ difference
Sensitivity	Detect hippocampal volume difference of less than 25%	Image 1: 3.528% Image 2: 6.193% Image 3: 4.680% Image 4: 4.113%	Average hippocampus volumes for each image set (N=4); find 35% confidence intervals for each set
Time Optimization	< 60 minutes	49.33±1.32 mirrates	Average all trials (N=36) across all three raters (Rater 1, Rater 2, Rater 3)

Objective and Design Challenges

Objective: To develop a robust semi-automatic computer method that determines the volume of the rat hippocampus from a magnetic resonance image.

Specifications

- Inter- and intra-rater reliability of at least 0.90, as measured by the Dice's overlap coefficient
- Detection of a rat hippocampal volume difference of less than 25% between image sets
- · Segmentation of hippocampus in under 60 minutes

Risks

 Ambiguous anatomical boundaries of the rat hippocampus
 Discrepancies between users due to previous knowledge of hippocampal shape affecting the ability to make final adjustments to the segmented hippocampus

Constraints

- Low sensitivity
- Small sample size (N=4)
- Barriers in software functionality

Results: Segmentation Parameters

Gaussian	E dge	Edge
Blurring	Contrast	Mapping
1.000	0.054	3.000

Balloon Force	Curvature Force	Advection Force
1.600	0.620	0.940

Conclusions and Recommendations

Conclusions

- A segmentation protocol was developed for segmenting the rat hippocampus in MR images
- The protocol allowed for consistent volume measurements between raters, and between measurements from the same rater

Recommendations

- Modify ITK-SNAP interface to improve manual segmentation portion of the segmentation process
- Use segmentation protocol on MR images from isofluraneexposed mice

Acknowledgements

We would like to thank Dr. Lynnae Schwartz and Dr. James Gee for their guidance and support throughout our senior design project.