### **Project Description**

Title: Synthesis of Artificial Red Blood Cells from Polymersome

Student: Syung-Hun Han Advisor: Dr. Dan Hammer

Creation of artificial red blood cells could be life-saving for patients suffering from certain diseases like sickle-cell anemia where patients do not get enough oxygen (supplied by red blood cells) to their tissues and organs. Syung set out to synthesize artificial red blood cells from nano-sized vesicles known as polymersomes and succeeded in generating the precursors for the red blood cells. He also carried out simulations to predict the performance of those cells.

## Synthesis of Artificial Red Blood Cells from Polymersome

BE492 Fall 2009 Syung-Hun Han Advisor: Dr. Daniel A. Hammer, Department of Bioengineering Mentor: Dr. Greg Robins, Department of Bioengineering

#### Background

- Red Blood Cell related diseases include: Sicklecell Disease, Thalassemia, Hemolysis and etc.
- I in 5,000 African Americans are affected by SCD in the United States, according to National Institute of Health.
- Problem of patients = insufficient oxygen supply to necessary tissue and organs
- Synthesizing Artificial Red Blood Cells from Polymersomes such as PEO-PBD.
- Provides adequate oxygen supply to organs in patients with RBC related diseases.

#### Hypothesis, Objective, and Goal

- Synthesize and characterize nano-sized polymer vesicles encapsulated with human hemoglobin.
- Develop the simulation system that generates the vesicle membrane permeability value, using the oxygen concentration measured in experiment.
- Polymersome membrane tunings such as increasing membrane thickness or cross linking the polymers will result in less permeable, but more stable vesicles.



#### Experimental Procedure



equation, and use data gathered to obtain the membrane permeability

#### Results

$$V_{s} \cdot \frac{d[O_{2}]_{s}}{dt} = P_{i}([O_{2}]_{a} - [O_{2}]_{s})(A_{i} + A_{b}) + P_{v} \cdot A_{v}([O_{2}]_{v} - [O_{2}]_{s})$$

$$\frac{d[O_{2}]_{v}}{dt} = (\frac{P_{v} \cdot A_{v}}{V_{v}})([O_{2}]_{v} - [O_{2}]_{s}) - \frac{d[Hb]_{o}}{dt}$$

$$\frac{d[Hb]_{o}}{dt} = K_{on}[Hb]_{v}[O_{2}]_{v} - K_{off}([Hb]_{0} - [Hb]_{v})$$

| Radius of vesicles       | 75-100nm          | Concentration of oxygen in | 0.273mmole/<br>L |
|--------------------------|-------------------|----------------------------|------------------|
| % composition of vesicle | 4% experimentally | Kon*                       | 40,000/(M*s)     |
| Concentration of total   | 70mmole/L         | K <sub>off</sub> *         | 1,000/s          |

\* Leon M. College Matter of the hemoglobin oxygen dissociation curve demystified. Adv Physiol Educ 31:198-201

| 2007.            |               |               |               |               |  |
|------------------|---------------|---------------|---------------|---------------|--|
|                  | Trial 1       | Trial 2       | Trial 3       | Trial 4       |  |
| T <sub>1/2</sub> | 93 sec        | 85.8 sec      | 87 sec        | 91.2 sec      |  |
| Membrane         | 1.0468822E-07 | 1.1164369E-07 | 1.1041268E-07 | 1.0633438E-07 |  |
| Permeability     | m/sec         | m/sec         | m/sec         | m/sec         |  |

#### Results Vesicle membrane \*#1 02 Pump permeability E 250 ▲#2 O2 Pump



 $y = 4E - 06x^{-0.798}$ 

 $R^2 = 0.9916$ 

# Experimental Adjustment

- Inducing condition for creation of nano-sized vesicles with hemoglobin molecules encapsulated was from high temperature to room temperature.
- Separation of unencapsulated hemoglobin was done by different method of using filter tubes of 300K.
- Percent of vesicles in total solution has been increased in the simulation model.

#### Conclusion, Recommendations and Acknowledgement

- Hemoglobin was extracted from human blood and purified.
- Stable nano-sized vesicles encapsulated with hemoglobin were synthesized.
- Simulation model was established to predict vesicle permeability from oxygen partial pressure measurements in solution.
- Different polymersome vesicle testing is still under progress.